


Short recap and today’s learning targets

Last time we discussed

 the interactions between the Standard Model fields
* global accidental symmetries of the Standard Model

» count the number of parameters necessary to describe the Standard Model

Today you will ...

* be introduced to flavour physics

+ analyse the structure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix used to describe quark mixing
in the Standard Model



Counting the Standard Model parameters

N phys

general Nbroken

* Lyin: three real parameters, the gauge couplings g, g', g5

L4: two real parameters v, 4

Lyyk(lepton sector): three Yukawa couplings for the leptons y,,y,, y;

Lyuk(quark sector): six Yukawa couplings for the quarks y,, y;, V¢, V4, ¥s, Vb, three mixing angles + phase
* two 3%x3 complex Yukawa matrices Y%, Y% — 36 parameters (18 real parameters and 18 phases) in a general basis
* the kinetic terms for the quarks have a global symmetry G, = U(3)oXU(3);xU(3)p which has 27 generators

* the Yukawa terms break the symmetry into a baryon number H, = U(1)p, which has a single generator — Npoken = 26

hys = 36 — 26 = 10 = NG =18-9=9 N® —18-17=1

N phys phys

p

* SM has 18 parameters: 3 gauge couplings, 2 related to the Higgs potential, 3 charged lepton masses, 6 quark

masses, and 4 CKM parameters



Flavour physics

* The appearance of the CKM matrix in the interactions of the W —boson introduces two important ingredients:

tflavour-changing interactions and CP violation!

* The term flavours is used to describe several mass eigenstates with the same quantum numbers
* Charged leptons e, u, T are in the (1)_; representation
 Up-type quarks u, ¢, t are in the (3),,/3 representation
* Down-type quarks d, s, b are in the (3)_; /3 representation
 Neutrinos vy, vy, v3 in the (1), representation

* Flavour physics: interactions that distinguish among flavours (W — mediated weak interactions and Yukawa

interactions)
* Flavour parameters: parameters that carry flavour indices (10 in the SM, 6 quark masses + 4 CKM parameters)

* Flavour-universal: couplings are proportional to unit matrix in flavour space (strong, electromagnetic, Z —mediated

weak interactions)

 Flavour-diagonal: couplings are diagonal but not necessarily universal (Yukawa interactions)



Flavour structure of the Standard Model: mass spectrum

—Lyuk = diMgdh + ut Myub + etM,es +h.c., =123
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Flavour structure of the Standard Model: cc interactions

g _ . . = . i . )
Ly, cc = —E[W(ui‘vaky“di‘ + Vg vter) + Wy (diVigy*uf +éeiy*ve)|, aki=1,23

Quark current Lepton current

CKM matrix
h(1 —y)V —yH* (1 —vs)
2\/—)/ ( ]/5) (Yk e/ement W+ 2\/_

—Vy*(1 —ys)V, —VyH*(1 —ys)

2\/_

can violate flavour (change generation) cannot violate flavour — lepton flavour universality
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CKM matrix

L e = == [ Wit @V ey dl +viyPel) + Wy (AEVigytug + ely™i,)],

V2

nt - nle*v, decays

D - mlv,D — Klv decays
D* - u*v,, D" - t™v, decays

« W?* 5 ¢5(Cs) decays
* D - pv,, DS - vy, decays

Superallowed nuclear f decays

A

«

4—

>

Vekm

\

/ Vud Vus
17
Ved CS /
Via  Vis) Vi

Mainly loop processes

« B — B oscillations

* B - X,y,B = uTu" decays
« K* - n*vv decays

v

Vup
Vlctb T;’

a,k,i=1,2,3

K — lv; and K — mlv; decays
T = hv; (h = m, K) decays

Inclusive b —» uX measurements
B - mlv,B - plv,B — tv decays

Inclusive b —» cX measurements

By - D( )lv decays

B(t - Wb)/B(t » Wq) decays
Z — bb indirectly via loops



CKM matrix: standard parametrisation

g _ . . = . i . )
Ly, cc = —ﬁ[W;(ui‘ aVHAf + i yPer) + W (dfVigytuf +efytvi)], aki=1,2,3

Vud Vus Vub , , ,
Cabibbo-Kobayashyi-Maskawa (CKM) matrix: 3X3 complex unitary matrix

Vekms = | Vea  Ves Vep
Four physical parameters: three mixing angles + one complex phase

Via  Vis Vi
1 0 0 C13 0 sq3e7 %0 Ci2 S12 O
Vekms =0 C23  S23 0 1 0 —S1p €15 0] =
0 —S23 (23 —513€i5 0 C13 0 0 1 Sij = sin6;;
C12€13 S12€13 sp3e 7 Cij = COs b
— | —S12€23 — C12523513€i(S C12€23 — 5125235139i(S 523€13
512923 — C12023513€i(S —C12523 — 512C23S13ei(S €23C13

Standard parametrization used by the PDG (link)


https://pdg.lbl.gov/2023/web/viewer.html?file=../reviews/rpp2023-rev-ckm-matrix.pdf

CKM matrix: standard parametrisation

, d S b
0.97435 + 0.00016 0.22500 + 0.00067 0.00369 + 0.00011 o
Vexm = | 022486 +0.00067 0.97349 +£0.00016  0.041824390683 | > | . b -
0.00857293:99929 0.041107399983  0.999118+9990031 .
t =

* Experimentally the CKM matrix is very close to a unit matrix
 Strong hierarchy is observed in the off-diagonal elements: 5,3 < 553 K 51, K1
* We can use an expansion in the small parameter |V,,;| = 4 = 0.225

* Then to an excellent approximation:

AZ
C12:1_7: c13 =1, C23 =1

* The virtue of the standard parametrisation is that by measuring |Vs|, |V,,p|, and [V, | in tree-level decays one can

determine s;,, s13,and s,3 simply through

S12 = Visl, s13 = [Vupl, S23 = |Vepl



CKM matrix: Wolfenstein parametrisation

* The hierarchical structure of the CKM matrix is best represented by the Wolfenstein parametrisation

Vus = S12 = 4, Vep = S23 = AX%, Vup = 5133_i6 = AAB(p — in)
513 513 .
= ) = )
P 512523 o ( 512523 -
1—2%/2 A A3 (p —in)
VCKM — —A 1-— /12/2 A/l2 + 0(&4)
AB(1—p—in) —AN? 1

* Doing the change in variables in the standard parametrisation we find a CKM matrix as a function of 4, 4, p, n that

satisfies unitarity exactly!

« Expanding the elements of the standard parametrisation we recover the Wolfenstein matrix and we can find

explicit corrections of 0(1*) and higher



CKM matrix: Wolfenstein parametrisation

* The hierarchical structure of the CKM matrix is best represented by the Wolfenstein parametrisation

Vis = S12 = 4, Vep = S23 = A2%, Vup = s13e7 = A23(p — in)
513 S13 .
= cos 0 = sin &
P S$12523 7 S12523
1—2%/2 A A3 (p —in)
VCKM — —A 1-— /12/2 A/IZ + 0().4)
AB(1—p—in) —AX? 1
p =0.159 +0.010 A =0.826%3712
n =0.348+ 0.010 A =0.22500 + 0.00067

Experimentally the CKM is close to a unit matrix
feature of “the” Standard Model and far from “a” generic Standard Model
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CKM matrix: CP-violation

 Electromagnetic and strong interactions are both invariant under parity P, charge conjugation C, and time reversal T

« Weak interaction violates C, P maximally and the combination CP is violated by the phase 6 of the CKM matrix

« We have

_ cP - 4 CP -
uyy,d, — —dyytu,, W, ——-w+

_9
V2

~ I _LCP g
[uf akl’”dfm:r"‘dkaay”uf%]_’—_

V2 [dEVary uf W™ + BfViay, diw* ]

q _
LW, cc

The Lagrangian is only invariant under CP ifV,, =V, foralla,k =1,2,3

At least three generations of quarks are needed to get CP violation
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CKM matrix: CP-violation

Vua Vs Vup 1—2%/2 A A2 (p — in)
Vekms = | Vea Vs Vep | = -1 1—2%2/2 AN? +0(1%)
Via Vs Vi APA—p—in) —AAr? 1

* The CKM complex phase § is (the only) source of CP-violation in the SM
* (P-violation in the processes involving quarks: experimentally well established
» Experimentally strong hierarchy is observed: s;3 K 5,3 K 51, K1

« Mixing matrix in the lepton sector arising from neutrino mass terms (d = 5 operators) COULD lead to CP-violation

in lepton processes but it is not yet observed

* CP-conservation in QCD is an experimental fact = “Strong CP problem”
* QCD Lagrangian would require a term that violates CP « 6 (additional parameter)

» tight experimental bounds on CP-violation in QCD (no electric dipole moment of the neutron) = 6 < 10710 (Why??)



CKM matrix: Jarlskog invariant

There is a freedom to define phases
There are quantities that are invariant under phase rotation (observables)
Observables: |V,;|?, Qijki = ViijlVi’;V,:j, arg(Qijkl)

In the Standard Model there is one basis-independent invariant, Jcxm

3
7m(ViijlVi7V1:j) = Im(Qijr1) = Jexm Z €ikmEjin » (i,j,k1=1,23)

mmn=1

Jckm corresponds to

_ 2 : — 216 12
JckM = €12€23€13512523513 Sind =~ A°A“n

The Jarlskog invariant is a very important observable, essential for CP violation and is related to the areas of all

CKM unitarity triangles: A = |Jckm|/2



CP violation in “the” Standard Model

The parameters of the CKM matrix in nature are far from generic
A generic Standard Model violates CP but very specific realisations can conserve CP

Necessary and sufficient condition for the Standard Model to violate CP:

Xcp = AmE.Ami, Amé, Amy Amp,AmS, Joxm # O, Amy;
Leading to the following requirements
 within each quark sector there must be no mass degeneracy

* the Jarlskog invariant must not vanish

2
l

2
J



CKM matrix: unitarity relations

Vud Vus Vub
Vekmr = Vea Ves Ve |,
Via Vis Vi

 Unitarity condition — orthogonality

vvt = vV =1 (unitarity)

 Unitarity leads to the following set of equations (normalization of the columns and rows of the CKM matrix)

VUV]:](l =k = u,c, t) =1

Vual? + Veal? + [Vigl? =1 < 0(1) + 0(2%) + 0(1°)
Vis|? + Ves|? + [Ves|? = 1 o< 0(A%) + 0(1) + 0(A%)
Vupl® + Vepl? + [Vipl? = 1 < 0(2°) + 0(A*) + 0(1)

VLJV{;C(] =k = d, S, b) =1

Vudl2 + |Vus|2 + |Vub|2 =11+ O(AZ) + 0(16)
Veal® + [Ves|? + [Vep|? = 1 < 0(2%) + 0(1) + 0(A%)
Veal® + [Ves® + V> = 1 < 0(2°) + 0(1*) + 0(1)



CKM matrix: unitarity triangles

Vud Vus Vub
Vermt = | Vea  Ves  Vep |, vvt =v'v =1 (unitarity)
Via  Vis Vi

* Observables (invariant under phase transformations): [Vy;|?, 0; ikt = VijViaVa Vi arg(Qi jkl)
 Unitarity condition — orthogonality

« Geometrical interpretation of the off-diagonal elements: 6 independent “unitarity” triangles

VigViyr =0, (qq' = ds,db, sb) VyiVii, =0, (qq' = uc,ut,ct)
q q

i=u,c,t i=d,s,b



“The” unitarity triangle

* Geometrical presentation of one of the triangles

z VquiZ’ =0, (qq’ = db) = VirVua + VipVia + VepVeqg = 0

(p,m)  complex plane

VipY o rescale by V., V}; and rotate
ViVl A
Ve o (0,0) (1,0)
VeaVep ) A—E[V V., 1[V.qVoyp, sin ]—l|Q sin |—1|7m(Q )|—l|] |
a=arg( -7 7 = arg(—Qyprq) = 5 WedVepIlWVuaVup SINY] = 5 1%udcep SINYVT = 5 udep/l = 5 l/CKM
ua’ub
f = arg <_ VeaVen = arg(—Q,pcq) ¢ observables JekM = C12€23C13512523513 Sin 6 ~ A°A%n
VeaVep
1
ViaVy Jekml| < —=~0.1
y = arg (— - ’ib> = arg(—CQcpua) 6v3
Vea chb J

Best fit: Joxy = (3.11513527 )x107°



“The” unitarity triangle

* Geometrical presentation of one of the triangles

z VigVigr = 0, (qq" = db) = VivVua + VipVea + VepVeq = 0

(p,m)  complex plane

VipY o rescale by V., V}; and rotate
ViVl A
Ve 8 (0,0) (1,0)

- \ 1 | 1 | 1 1

a = arg <_ td t*b> = arg(—Quprq) A = > VeaVepl[VuaVup siny] = 7 1Quacp siny| = 7 19m(Quacy)| = 7 lckml
ViaVup

_ VeaVen \ _ o,
B =arg| — v )= arg(—Q¢pcq) ¢ Observables All unitarity triangles have equal area - [Jckm|/2
td"tb

VuaVy P-violation only if

y = arg (— - ’ib> = arg(~Qepua), CP-violation only if J # 0
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“The” unitarity triangle

* Geometrical presentation of one of the triangles

Vfwv“d
. VeaVib
‘ VCd cb
R — ViaVip
b — *
VCd cb

=J(1=p)? +7

— ,02 +n2

(qq’ = db)

rescale by V., V;; and rotate

VivVua + VipVea + VepVeq = 0

(p,m)  complex plane

n
»

> observables

(0,0) (1,0)
Vea = Vegle ™, Vip = [Viple™
a + f +y = 180° (unitarity)
Rye + R,e™f =



Goal of unitarity triangle tests

Basic idea: measure the 4 CKM parameters in many different ways

* Over-constrain the triangle by making measurements of all parameters and comparing their consistency

 Particularly useful are the comparisons of measurements of the same parameters in tree-level processes (pure SM)

and those made with loops (more sensitive to New Physics)

« Any inconsistency is a signal of New Physics!

Problems: experimental errors and theoretical errors

* We have to be smart ...
 smart theory to reduce errors

* smart experiment to reduce errors

* There are cases where both errors are very small (sweet spot!)



CKM matrix summary
a,k,i=1,2,3

LW, cc — \/E

W (@l + Tyt + W (dEVigy ul + efyviy)]
S b

€
u v

\
o
|

—

|

i\
i
N
q

V = ¢ D
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Unitarity triangle: ~ 30 years of progress
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Unitarity triangle: ~ 30 years of progress
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Unitarity triangle: ~ 30 years of progress
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Unitarity triangle: ~ 30 years of progress
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Unitarity triangle: ~ 30 years of progress

* Broad consistency between all current measurements of the UT
* The CKM paradigm: dominant mechanism of CP-violation in nature
* However, certainly possible for New Physics to give ~10% level effects

* We need more measurements!

0-7 N 1 ] 1 I 1 1 1 ! 1 1 1 I 1 1 1 I 1 1 1 I I _
| — Yo} —
0.6 — A 1 Y Am € fitter
Sl . : d K Summer 23 —
- 8 ! =
05 35 sin2p ; —
— . sol.w/ cos 2B < 0 —
— 8 : (excl. at CL > 0.95) ]
0.4 —3 . —
I [&] 1 —
1= — 3 : e .
03 — . W=
B : o o
02 = : -
E E IVubI E
- a I | : | | | I N
0.0 1 1 L 1 L 1 L L 1 L L 1 1 1 1 1 1
-04 -0.2 0.0 0.2 0.4 0.6 0.8 1.
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Unitarity triangle: tree level

 Unitarity triangle formed from only tree-level quantities - assumed pure SM

» Tree-level observables are y and the |V, |/|V,;| side

0-7 | I 1 1 I 1 1 1 ! 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 _
- 2 ' cry e

— @] : Y fitter —

0.6 _—é; ! Summer 23 —_
- |3 : -

05 : —
— 9 1 ]

~ 18] -

L D —_

0.4 _E —
= -
1= — 3 ]
0.3 — —
02 | —
0.1 —
0.0 =)
1

ol

0.4
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Unitarity triangle: loop level

 Unitarity triangle formed from only loop-level quantities — possibility of NI etfects
* There is a good consistency between the tree and loop measurements

* Need to improve the precision of tree-level processes to allow for a more sensitive comparison

0-7 | 10 1 I I 1 I I ! I I 1 I I 1 1 I 1 1 I I 1 1 1 I I I 1 |
-2 | Amy& Amg (CK

0.6 B— A I AM € fitter ]
i T . ! d K Summer 23 —
— 8 =
05 —3g sin2B ! —
L : sol.w/ cos 2B <0 —

— 8 : (excl. at CL > 0.95) ~

0.4 —S i —_
. &) 1 —
I= 3 : -
0.3 —
02 |- i =
0.1 —
0.0 [ 1 1 1 I 1 1 1 -

-0.4 -0.2



Summary of Lecture 6

Main learning outcomes

* Introduction to the flavour structure of the SM: mass spectrum, flavour changing interactions

* The quark-mixing CKM matrix
* what parametrisations are commonly used in particle physics
* how does CP violation arise in the SM
* how imposing unitarity on the CKM matrix allows us to construct unitarity triangles

* experimental tests and constraints



