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Short recap and today’s learning targets 

Last time we discussed

• the interactions between the Standard Model fields

• global accidental symmetries of the Standard Model

• count the number of parameters necessary to describe the Standard Model

Today you will …

• be introduced to flavour physics

• analyse the structure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix used to describe quark mixing 

in the Standard Model
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Counting the Standard Model parameters
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• ℒ!"#: three real parameters, the gauge couplings 𝑔, 𝑔$, 𝑔%

• ℒ&: two real parameters 𝑣, 𝜆

• ℒ'(!(lepton sector): three Yukawa couplings for the leptons 𝑦) , 𝑦* , 𝑦+

• ℒ'(!(quark sector): six Yukawa couplings for the quarks 𝑦,, 𝑦- , 𝑦. , 𝑦/ , 𝑦%, 𝑦0, three mixing angles + phase

• two 3×3 complex Yukawa matrices 𝑌! , 𝑌" → 36 parameters (18 real parameters and 18 phases) in a general basis

• the kinetic terms for the quarks have a global symmetry 𝐺# = 𝑈 3 $×𝑈 3 %×𝑈 3 & which has 27 generators

• the Yukawa terms break the symmetry into a baryon number 𝐻# = 𝑈 1 ', which has a single generator → 𝑁()*+,- = 26

• SM has 18 parameters: 3 gauge couplings, 2 related to the Higgs potential, 3 charged lepton masses, 6 quark 

masses, and 4 CKM parameters

𝑁!"#$ = 𝑁%&'&()* −𝑁+(,-&'

𝑁!"#$ = 36 − 26 = 10 ⟹ 𝑁!"#$
% = 18 − 9 = 9 𝑁!"#$

& = 18 − 17 = 1



Flavour physics
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• The appearance of the CKM matrix in the interactions of the 𝑊 −boson introduces two important ingredients: 

flavour-changing interactions and 𝐶𝑃 violation!

• The term flavours is used to describe several mass eigenstates with the same quantum numbers

• Charged leptons 𝑒, 𝜇, 𝜏 are in the 1 !" representation

• Up-type quarks 𝑢, 𝑐, 𝑡 are in the 3 #$/& representation

• Down-type quarks 𝑑, 𝑠, 𝑏 are in the 3 !"/& representation

• Neutrinos 𝜈", 𝜈$, 𝜈& in the 1 ' representation

• Flavour physics: interactions that distinguish among flavours (𝑊 − mediated weak interactions and Yukawa 

interactions)

• Flavour parameters: parameters that carry flavour indices (10 in the SM, 6 quark masses + 4 CKM parameters)

• Flavour-universal: couplings are proportional to unit matrix in flavour space (strong, electromagnetic, 𝑍 −mediated 

weak interactions)

• Flavour-diagonal: couplings are diagonal but not necessarily universal (Yukawa interactions)



Flavour structure of the Standard Model: mass spectrum
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−ℒ;<- = 𝑑̅=> '𝑀?𝑑@> + 𝑢=> '𝑀A𝑢@> + 𝑒̅=> '𝑀B𝑒@> + h. c.	, 𝑖 = 1, 2, 3

-𝑀' = diag 𝑚', 𝑚(, 𝑚)  

-𝑀* = diag 𝑚*, 𝑚+, 𝑚,  

-𝑀- = diag 𝑚-, 𝑚., 𝑚/  

 𝑚0 = 𝑦0
1
2

Measured masses suggest strong hierarchy between and within families

Strong hierarchy of the Yukawa couplings

No theoretical reason in the SM



Flavour structure of the Standard Model: cc interactions
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ℒC,	EE = −
𝑔
2
𝑊FG 7𝑢=H𝑉HI𝛾F𝑑=I + 𝜈̅B=> 𝛾F𝑒=> +𝑊FJ 𝑑̅=I𝑉IH∗ 𝛾F𝑢=H + 𝑒̅=>𝛾F𝜈B=> , 	 𝛼, 𝑘, 𝑖 = 1, 2, 3

Quark current Lepton current

can violate flavour (change generation) cannot violate flavour → lepton flavour universality



CKM matrix
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ℒC,	EE = −
𝑔
2
𝑊FG 7𝑢=H𝑉HI𝛾F𝑑=I + 𝜈̅B=> 𝛾F𝑒=> +𝑊FJ 𝑑̅=I𝑉IH∗ 𝛾F𝑢=H + 𝑒̅=>𝛾F𝜈B=> , 	 𝛼, 𝑘, 𝑖 = 1, 2, 3

𝑉./0 =
𝑉12 𝑉13	 𝑉14
𝑉52 𝑉53 𝑉54
𝑉62 𝑉63 𝑉64

• Superallowed nuclear 𝛽 decays
• 𝜋1 → 𝜋2𝑒1𝜈) decays

• 𝐾 → 𝑙𝜈3 	and	𝐾 → 𝜋𝑙𝜈3 decays
• 𝜏 → ℎ𝜈+ ℎ = 𝜋, 𝐾  decays

• 𝐷 → 𝜋𝑙𝜈, 𝐷 → 𝐾𝑙𝜈 decays
• 𝐷1 → 𝜇1𝜈* , 𝐷1 → 𝜏1𝜈+ decays

• 𝑊± → 𝑐𝑠̅ ̅𝑐𝑠  decays
• 𝐷%1 → 𝜇1𝜈* , 𝐷%1 → 𝜏1𝜈+ decays

• ℬ(𝑡 → 𝑊𝑏)/ℬ 𝑡 → 𝑊𝑞  decays
• 𝑍 → 𝑏P𝑏 indirectly via loops

• Inclusive 𝑏 → 𝑐𝑋 measurements
• 𝐵(%) → 𝐷(%)

∗ 𝑙𝜈 decays

• Inclusive 𝑏 → 𝑢𝑋 measurements
• 𝐵 → 𝜋𝑙𝜈, 𝐵 → 𝜌𝑙𝜈, 𝐵 → 𝜏𝜈 decays

Mainly	loop	processes
• 𝐵 − P𝐵 oscillations
• 𝐵 → 𝑋%𝛾, 𝐵 → 𝜇1𝜇8 decays
• 𝐾1 → 𝜋1𝜈𝜈̅ decays



CKM matrix: standard parametrisation
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ℒC,	EE = −
𝑔
2
𝑊FG 7𝑢=H𝑉HI𝛾F𝑑=I + 𝜈̅B=> 𝛾F𝑒=> +𝑊FJ 𝑑̅=I𝑉IH∗ 𝛾F𝑢=H + 𝑒̅=>𝛾F𝜈B=> , 	 𝛼, 𝑘, 𝑖 = 1, 2, 3

𝑉./0 =
𝑉12 𝑉13	 𝑉14
𝑉52 𝑉53 𝑉54
𝑉62 𝑉63 𝑉64

Cabibbo-Kobayashyi-Maskawa (CKM) matrix: 3×3 complex unitary matrix 

Four physical parameters: three mixing angles + one complex phase

𝑉./0 =
1 0	 0
0 𝑐cd 𝑠cd
0 −𝑠cd 𝑐cd

𝑐ed 0	 𝑠ed𝑒fgh
0 1 0

−𝑠ed𝑒gh 0 𝑐ed

𝑐ec 𝑠ec 0
−𝑠ec 𝑐ec 0
0 0 1

=

	 =
𝑐ec𝑐ed 𝑠ec𝑐ed 𝑠ed𝑒fgh

−𝑠ec𝑐cd − 𝑐ec𝑠cd𝑠ed𝑒gh 𝑐ec𝑐cd − 𝑠ec𝑠cd𝑠ed𝑒gh 𝑠cd𝑐ed
𝑠ec𝑠cd − 𝑐ec𝑐cd𝑠ed𝑒gh −𝑐ec𝑠cd − 𝑠ec𝑐cd𝑠ed𝑒gh 𝑐cd𝑐ed

 

𝑠>L = sin 𝜃>L
𝑐>L = cos 𝜃>L

Standard parametrization used by the PDG (link)

https://pdg.lbl.gov/2023/web/viewer.html?file=../reviews/rpp2023-rev-ckm-matrix.pdf


• Experimentally the CKM matrix is very close to a unit matrix

• Strong hierarchy is observed in the off-diagonal elements: 𝑠9: ≪ 𝑠;: ≪ 𝑠9; ≪ 1

• We can use an expansion in the small parameter 𝑉,% = 𝜆 ≈ 0.225

• Then to an excellent approximation:

• The virtue of the standard parametrisation is that by measuring 𝑉,% , 𝑉,0 , and 𝑉-0  in tree-level decays one can 

determine s9;, 𝑠9:, and	𝑠;: simply through

CKM matrix: standard parametrisation
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𝑉345 =
0.97435 ± 0.00016 0.22500 ± 0.00067 0.00369 ± 0.00011
0.22486 ± 0.00067 0.97349 ± 0.00016 0.0418267.7779:;7.777<=

0.0085767.777><;7.77727 0.0411067.77792;7.777<? 0.99911867.7777?@;7.7777?>
 

𝑐9; = 1 −
𝜆;

2
, 	 𝑐9: = 1, 	 𝑐;: = 1

𝑠9; = 𝑉,% , 	 𝑠9: = 𝑉,0 , 	 𝑠;: = 𝑉-0



CKM matrix: Wolfenstein parametrisation
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• The hierarchical structure of the CKM matrix is best represented by the Wolfenstein parametrisation

• Doing the change in variables in the standard parametrisation we find a CKM matrix as a function of 𝜆, 𝐴, 𝜌, 𝜂 that 
satisfies unitarity exactly!

• Expanding the elements of the standard parametrisation we recover the Wolfenstein matrix and we can find 
explicit corrections of 𝑂 𝜆<  and higher

𝑉./0 =
1 − 𝜆c/2 𝜆 𝐴𝜆d 𝜌 − 𝑖𝜂
−𝜆 1 − 𝜆c/2 𝐴𝜆c

𝐴𝜆d 1 − 𝜌 − 𝑖𝜂 −𝐴𝜆c 1
+ 𝒪 𝜆t  

𝑉*( = 𝑠>2 = 𝜆, 	 𝑉+) = 𝑠2? = 𝐴𝜆2, 	 𝑉*) = 𝑠>?𝑒6&A = 𝐴𝜆? 𝜌 − 𝑖𝜂  

𝜌 =
𝑠>?

𝑠>2𝑠2?
cos 𝛿 	 𝜂 =

𝑠>?
𝑠>2𝑠2?

sin 𝛿



CKM matrix: Wolfenstein parametrisation
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• The hierarchical structure of the CKM matrix is best represented by the Wolfenstein parametrisation

𝑉./0 =
1 − 𝜆c/2 𝜆 𝐴𝜆d 𝜌 − 𝑖𝜂
−𝜆 1 − 𝜆c/2 𝐴𝜆c

𝐴𝜆d 1 − 𝜌 − 𝑖𝜂 −𝐴𝜆c 1
+ 𝒪 𝜆t  

𝜌 =
𝑠>?

𝑠>2𝑠2?
cos 𝛿 	 𝜂 =

𝑠>?
𝑠>2𝑠2?

sin 𝛿

𝜌 = 0.159 ± 0.010

	𝜂 = 0.348 ± 0.010

A = 0.82667.7>=;7.7><

	𝜆 = 0.22500 ± 0.00067

Experimentally the CKM is close to a unit matrix 
feature of “the” Standard Model and far from “a” generic Standard Model

𝑉*( = 𝑠>2 = 𝜆, 	 𝑉+) = 𝑠2? = 𝐴𝜆2, 	 𝑉*) = 𝑠>?𝑒6&A = 𝐴𝜆? 𝜌 − 𝑖𝜂  



CKM matrix: 𝑪𝑷-violation

12

• Electromagnetic and strong interactions are both invariant under parity 𝑃, charge conjugation 𝐶, and time reversal 𝑇

• Weak interaction violates 𝐶, 𝑃 maximally and the combination 𝐶𝑃 is violated by the phase 𝛿 of the CKM matrix

• We have 

7𝑢=𝛾F𝑑=
MN
− 𝑑̅=𝛾F𝑢=, 	 𝑊F±

MN
−𝑊F	∓

ℒC,	EE
Q = −

𝑔
2
7𝑢=H𝑉HI𝛾F𝑑=I𝑊FG + 𝑑̅=I𝑉IH∗ 𝛾F𝑢=H𝑊FJ

MN
−
𝑔
2
𝑑̅=I𝑉HI𝛾F𝑢=H𝑊

F	J +	 7𝑢=H𝑉IH∗ 𝛾F𝑑=I𝑊
F	G

The Lagrangian is only invariant under 𝑪𝑷 if 𝑽𝜶𝒌 = 𝑽𝜶𝒌∗  for all 𝜶, 𝒌 = 𝟏, 𝟐, 𝟑

At least three generations of quarks are needed to get 𝑪𝑷 violation



CKM matrix: 𝑪𝑷-violation
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• The CKM complex phase 𝛿 is (the only) source of 𝐶𝑃-violation in the SM

• 𝐶𝑃-violation in the processes involving quarks: experimentally well established

• Experimentally strong hierarchy is observed: 𝑠9: ≪ 𝑠;: ≪ 𝑠9; ≪ 1

• Mixing matrix in the lepton sector arising from neutrino mass terms (𝑑 = 5 operators) COULD lead to 𝐶𝑃-violation 

in lepton processes but it is not yet observed

• CP-conservation in QCD is an experimental fact ⟹ “Strong 𝑪𝑷 problem”

• QCD Lagrangian would require a term that violates 𝐶𝑃 ∝ 𝜃̅ (additional parameter)

• tight experimental bounds on 𝐶𝑃-violation in QCD (no electric dipole moment of the neutron) ⟹ 𝜃̅ < 10!"' (Why??)

𝑉./0 =
𝑉12 𝑉13	 𝑉14
𝑉52 𝑉53 𝑉54
𝑉62 𝑉63 𝑉64

=
1 − 𝜆c/2 𝜆 𝐴𝜆d 𝜌 − 𝑖𝜂
−𝜆 1 − 𝜆c/2 𝐴𝜆c

𝐴𝜆d 1 − 𝜌 − 𝑖𝜂 −𝐴𝜆c 1
+ 𝒪 𝜆t  



CKM matrix: Jarlskog invariant
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• There is a freedom to define phases

• There are quantities that are invariant under phase rotation (observables)

• Observables: 𝑉?@ ;, 	 𝑄@AB3 ≡ 𝑉@A𝑉B3𝑉@3∗𝑉BA∗ , arg 𝑄@AB3

• In the Standard Model there is one basis-independent invariant, 𝐽CDE

• 𝐽CDE corresponds to

• The Jarlskog invariant is a very important observable, essential for 𝐶𝑃 violation and is related to the areas of all 

CKM unitarity triangles: 𝐴 = 𝐽CDE /2

ℐ𝑚 𝑉@A𝑉B3𝑉@3∗𝑉BA∗ = ℐ𝑚 𝑄@AB3 = 𝐽CDE �
F,HI9

:

𝜖@BF𝜖A3H , 	 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3

𝐽CDE = 𝑐9;𝑐;:𝑐9:; 𝑠9;𝑠;:𝑠9: sin 𝛿 ≈ 𝜆J𝐴;𝜂



CP violation in “the” Standard Model
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• The parameters of the CKM matrix in nature are far from generic

• A generic Standard Model violates 𝐶𝑃 but very specific realisations can conserve 𝐶𝑃 

• Necessary and sufficient condition for the Standard Model to violate 𝐶𝑃:

• Leading to the following requirements

• within each quark sector there must be no mass degeneracy

• the Jarlskog invariant must not vanish

𝑋KL ≡ Δ𝑚.-
; Δ𝑚.,

; Δ𝑚-,
; Δ𝑚0%

; Δ𝑚0/
; Δ𝑚%/

; 	𝐽CDE ≠ 0, 	Δ𝑚@A
; = 𝑚@

; −𝑚A;



CKM matrix: unitarity relations

16

• Unitarity condition → orthogonality

• Unitarity leads to the following set of equations (normalization of the columns and rows of the CKM matrix)

𝑉*' 2 + 𝑉+' 2 + 𝑉,' 2 = 1 ∝ 𝑂 1 + 𝑂 𝜆2 + 𝑂 𝜆@  

𝑉*( 2 + 𝑉+( 2 + 𝑉,( 2 = 1 ∝ 𝑂 𝜆2 + 𝑂 1 + 𝑂 𝜆:  

𝑉*) 2 + 𝑉+) 2 + 𝑉,) 2 = 1 ∝ 𝑂 𝜆@ + 𝑂 𝜆: + 𝑂 1  

𝑉@A𝑉BA∗ 𝑖 = 𝑘 = 𝑢, 𝑐, 𝑡 = 1 𝑉@A𝑉@B∗ 𝑗 = 𝑘 = 𝑑, 𝑠, 𝑏 = 1

𝑉*' 2 + 𝑉*( 2 + 𝑉*) 2 = 1 ∝ 1 + 𝑂 𝜆2 + 𝑂 𝜆@  

𝑉+' 2 + 𝑉+( 2 + 𝑉+) 2 = 1 ∝ 𝑂 𝜆2 + 𝑂 1 + 𝑂 𝜆:  

𝑉,' 2 + 𝑉,( 2 + 𝑉,) 2 = 1 ∝ 𝑂 𝜆@ + 𝑂 𝜆: + 𝑂 1  

𝑉./0 =
𝑉12 𝑉13	 𝑉14
𝑉52 𝑉53 𝑉54
𝑉62 𝑉63 𝑉64

, 	 𝑉𝑉� = 𝑉�𝑉 = 𝕀	(unitarity)



CKM matrix: unitarity triangles

17

• Observables (invariant under phase transformations): 𝑉?@ ;, 	 𝑄@AB3 ≡ 𝑉@A𝑉B3𝑉@3∗𝑉BA∗ , arg 𝑄@AB3

• Unitarity condition → orthogonality

• Geometrical interpretation of the off-diagonal elements: 6 independent “unitarity” triangles

𝑉./0 =
𝑉12 𝑉13	 𝑉14
𝑉52 𝑉53 𝑉54
𝑉62 𝑉63 𝑉64

, 	 𝑉𝑉� = 𝑉�𝑉 = 𝕀	(unitarity)

�
@I,,-,.

𝑉@M𝑉@M!
∗ = 0, 𝑞𝑞$ = 𝑑𝑠, 𝑑𝑏, 𝑠𝑏 �

@I/,%,0

𝑉M@𝑉M!@
∗ = 0, 𝑞𝑞$ = 𝑢𝑐, 𝑢𝑡, 𝑐𝑡



“The” unitarity triangle
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• Geometrical presentation of one of the triangles

�
@I,

𝑉@M𝑉@M!
∗ = 0, 𝑞𝑞$ = 𝑑𝑏 	 ⟹	 𝑉,0∗ 𝑉,/ + 𝑉.0∗ 𝑉./ + 𝑉-0𝑉-/∗ = 0

𝛾

𝛽𝛼

𝑉,0∗ 𝑉,/

𝑉.0∗ 𝑉./

𝑉-0𝑉-/
∗

rescale by 𝑉-0𝑉-/∗  and rotate

𝛾 = 𝜙: 𝛽 = 𝜙9

𝛼 = 𝜙;

0,0 1,0

𝜌, 𝜂 complex plane

𝛼 = arg −
𝑉./𝑉.0∗

𝑉,/𝑉,0∗
= arg −𝑄,0./

𝛽 = arg −
𝑉-/𝑉-0∗

𝑉./𝑉.0∗
= arg −𝑄.0-/

𝛾 = arg −
𝑉,/𝑉,0∗

𝑉-/𝑉-0∗
= arg −𝑄-0,/

observables

𝐴 =
1
2
𝑉-/𝑉-0 𝑉,/𝑉,0 sin 𝛾 =

1
2
𝑄,/-0 sin 𝛾 =

1
2
ℐ𝑚 𝑄,/-0 =

1
2
𝐽CDE

𝐽CDE = 𝑐9;𝑐;:𝑐9:; 𝑠9;𝑠;:𝑠9: sin 𝛿 ≈ 𝜆J𝐴;𝜂

𝐽CDE < 9
J :

~0.1 

Best fit: 𝐽KNO = 3.11582.2QR12.2<S	 ×108Q



“The” unitarity triangle
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• Geometrical presentation of one of the triangles

�
@I,

𝑉@M𝑉@M!
∗ = 0, 𝑞𝑞$ = 𝑑𝑏 	 ⟹	 𝑉,0∗ 𝑉,/ + 𝑉.0∗ 𝑉./ + 𝑉-0𝑉-/∗ = 0

𝛾

𝛽𝛼

𝑉,0∗ 𝑉,/

𝑉.0∗ 𝑉./

𝑉-0𝑉-/
∗

rescale by 𝑉-0𝑉-/∗  and rotate

complex plane

𝛼 = arg −
𝑉./𝑉.0∗

𝑉,/𝑉,0∗
= arg −𝑄,0./

𝛽 = arg −
𝑉-/𝑉-0∗

𝑉./𝑉.0∗
= arg −𝑄.0-/

𝛾 = arg −
𝑉,/𝑉,0∗

𝑉-/𝑉-0∗
= arg −𝑄-0,/

observables All unitarity triangles have equal area - 𝑱𝐂𝐊𝐌 /𝟐

𝑪𝑷-violation only if 𝑱 ≠ 𝟎

0,0 1,0

𝜌, 𝜂

𝛾 = 𝜙: 𝛽 = 𝜙9

𝛼 = 𝜙;

𝐴 =
1
2
𝑉-/𝑉-0 𝑉,/𝑉,0 sin 𝛾 =

1
2
𝑄,/-0 sin 𝛾 =

1
2
ℐ𝑚 𝑄,/-0 =

1
2
𝐽CDE



“The” unitarity triangle
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• Geometrical presentation of one of the triangles

�
@I,

𝑉@M𝑉@M!
∗ = 0, 𝑞𝑞$ = 𝑑𝑏 	 ⟹	 𝑉,0∗ 𝑉,/ + 𝑉.0∗ 𝑉./ + 𝑉-0𝑉-/∗ = 0

𝛾

𝛽𝛼

𝑉,0∗ 𝑉,/

𝑉.0∗ 𝑉./

𝑉-0𝑉-/
∗

rescale by 𝑉-0𝑉-/∗  and rotate

complex plane

	 𝑅. =
𝑉./𝑉.0∗

𝑉-/𝑉-0∗
= 1 − 𝜌̅ ; + 𝜂̅;	

𝑅0 =
𝑉,/𝑉,0∗

𝑉-/𝑉-0∗
= 𝜌̅; + 𝜂̅;	

observables

𝑉./ = 𝑉./ 𝑒8@W , 𝑉,0 = 𝑉,0 𝑒8@X

𝛼 + 𝛽 + 𝛾 = 180∘ unitarity

𝑅0𝑒@X + 𝑅.𝑒8@W = 1

𝑅0 𝑅.

0,0 1,0

𝜌, 𝜂

𝛾 = 𝜙: 𝛽 = 𝜙9

𝛼 = 𝜙;



Goal of unitarity triangle tests
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Basic idea: measure the 4 CKM parameters in many different ways

• Over-constrain the triangle by making measurements of all parameters and comparing their consistency

• Particularly useful are the comparisons of measurements of the same parameters in tree-level processes (pure SM) 

and those made with loops (more sensitive to New Physics)

• Any inconsistency is a signal of New Physics!

Problems: experimental errors and theoretical errors

• We have to be smart …

• smart theory to reduce errors

• smart experiment to reduce errors

• There are cases where both errors are very small (sweet spot!)



CKM matrix summary
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ℒC,	EE = −
𝑔
2
𝑊FG 7𝑢=H𝑉HI𝛾F𝑑=I + 𝜈̅B=> 𝛾F𝑒=> +𝑊FJ 𝑑̅=I𝑉IH∗ 𝛾F𝑢=H + 𝑒̅=>𝛾F𝜈B=> , 	 𝛼, 𝑘, 𝑖 = 1, 2, 3



Unitarity triangle: ~ 30 years of progress
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1995



Unitarity triangle: ~ 30 years of progress
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2001



Unitarity triangle: ~ 30 years of progress
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2009



Unitarity triangle: ~ 30 years of progress
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2023



• Broad consistency between all current measurements of the UT

• The CKM paradigm: dominant mechanism of 𝐶𝑃-violation in nature

• However, certainly possible for New Physics to give ~10% level effects

• We need more measurements!

Unitarity triangle: ~ 30 years of progress
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Unitarity triangle: tree level
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• Unitarity triangle formed from only tree-level quantities → assumed pure SM

• Tree-level observables are γ and the 𝑉,0 / 𝑉-0  side



Unitarity triangle: loop level
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• Unitarity triangle formed from only loop-level quantities → possibility of NP effects 

• There is a good consistency between the tree and loop measurements

• Need to improve the precision of tree-level processes to allow for a more sensitive comparison



Summary of Lecture 6

Main learning outcomes

• Introduction to the flavour structure of the SM: mass spectrum, flavour changing interactions

• The quark-mixing CKM matrix

• what parametrisations are commonly used in particle physics

• how does 𝐶𝑃 violation arise in the SM

• how imposing unitarity on the CKM matrix allows us to construct unitarity triangles

• experimental tests and constraints

30


